Fatigue-resistant Photochromic Hemithioindigoes

Kunihiro ICHIMURA, Takahiro SEKI, Takashi TAMAKI, and Takeo YAMAGUCHI

Research Institute for Polymers and Textiles, 1-1-4 Higashi,

Tsukuba, Ibaraki 305

[†]Toyo Ink MFG Co. Ltd., 27 Wadai, Tsukuba, Ibaraki 300-42

The hemithioindigo derivatives have been found to show satisfactory photoresponses even after more than 10^4 cycles of alternate irradiation with the lights which can induce a Z - E isomerization.

Despite extensive investigations on organic photochromism, only a few compounds are known as being fatigue resistant. So far, spironaphthoxazine and its analogues 1) are only commercially used as ophthalmic glasses or light shielding materials. Besides this family, the high performance of photochromism is reported for cis/trans photoisomerization and reversible electrocyclic reactions. 2 , 3) This letter describes excellent photofatigue resistant property of 2-arylmethylene-benzo[\underline{b}]thiophene-3-($\underline{2}\underline{H}$)-one (hemithioindigo; HT) derivatives (1 and 2).

The preparation of 1 and 2 is described elsewhere. The absorption maxima in benzene are similar to those reported for the other analogues: $\lambda_{\text{max}} = 445 \text{ nm } (\text{Z: } \epsilon = 2.2 \text{x} 10^4 \text{ mol}^{-1} \text{dm}^3 \text{cm}^{-1}) \text{ and } 474 \text{ nm } (\text{E: } \epsilon = 1.3 \text{x} 10^4 \text{ mol}^{-1} \text{dm}^3 \text{cm}^{-1}) \text{ for 1; } \lambda_{\text{max}} = 445 \text{ nm } (\text{Z: } \epsilon = 2.2 \text{x} 10^4 \text{ mol}^{-1} \text{ dm}^3 \text{cm}^{-1}) \text{ and } 469 \text{ nm } (\text{E: } \epsilon = 1.2 \text{x} 10^4 \text{ mol}^{-1} \text{dm}^3 \text{cm}^{-1}) \text{ for 2. The benzene solutions } (1.4 \text{x} 10^{-5} \text{ mol dm}^{-3}) \text{ of 1 and 2 in 1x1 cm}^2 \text{ square cuvettes were exposed under air alternately to 405 nm and 480 nm lights of a 500 W Hg lamp. The photostationary yield of the E-isomer upon exposure to the 405 nm light (through a Corning 5-58 filter) was ca. 80% for both 1 and 2. On the other hand, the irradiation with the 480 nm light (through either a Kenko interference BP-48 filter or a Hoya Y-46 filter) gave the Z-isomer quantitatively. The irradiation was carried out for 10 s and 30 s for the 405 nm and 480 nm$

respectively, in order to bring about the photostationary state.

Figure 1 shows the plots of the absorbance of the Z-isomer given immediately after exposure to the 480 nm light vs. the repetition number of alternate irradiation. Apparently, the absorbance for 2 scarcely decreases even after 10^4 irradiating cycles. Excellent fatigue resistance is also shown for 1, though it is slightly less durable than 2. The half-life cycle $(n_{1/2})$ at which the absor-

bance loss due to fatigue reaches the half of the initial absorbance is 1×10^4 and 4×10^4 for 1 and 2, respectively. These values are comparable with those of diarylethene-type compounds, 3) but orders of magnitude are greater than those for well-known photochromic compounds such as nitrospiropyran⁶) and azobenzene. 7) Furthermore, it is remarkable that the addition of 1,4-diazabicyclo[2.2.2]octane (DABCO) improves the value of $n_{1/2}$ for these HTs. may be due to the quenching of 102 generated photochemically in a manner discussed in the case of thioindigo.8)

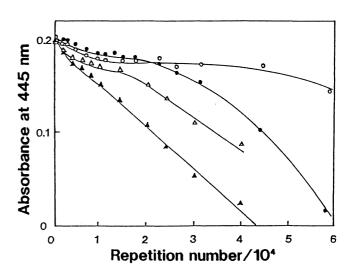


Fig. 1. Durability evaluation of 1 (Δ, \blacktriangle) and 2 (o, \bullet) by alternate irradiation with 405and 480 nm lights in the absence (closed) and presence (open) of DABCO $(8x10^{-5} \text{ mol dm}^{-3})$

References

- 1) N. Y. C. Chu, Solar Energy Materials, 14, 215 (1986).
- 2) S. Kawauchi, H. Yoshida, N. Yamashina, M. Ohira, S. Saeda, and M. Irie, Bull. Chem. Soc. Jpn., 63, 267 (1990).
- 3) M. Irie, Jpn. J. Appl. Phys., 28 (Suppl. 3), 215 (1989).
- 4) T. Yamaguchi, T. Seki, T. Tamaki, and K. Ichimura, to be published in J. Chem. Soc., Perkin Trans. I.
- 5) M. A. Mostoslavskii and V. A. Izmail'skii, J. Gen. Chem., USSR, 31, 21 (1961).
- 6) M. Sakuragi, K. Aoki, T. Tamaki, and K. Ichimura, Bull. Chem. Soc. Jpn., 63, 74 (1990).
- 7) $n_{1/2} \approx 2000$ under the similar condition (unpublished data).
- 8) N. Kuramoto and T. Kitao, J. Soc. Dyers Colour., 95, 257 (1979).

(Received June 5, 1990)